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4%—4 In this paper, ~~~~~~~ the following theorem~ Let

M be a complete, possibly infinite -dimensional ,

Riemannian manifold . Take any point q in M. Then
~)/~~~2 ~~~~~

the set of points p/ E  M which can be j oined to q by

a unique minimal geodesic contains a countable inter-

section of open dense subsets.
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I. Statement of results

We begin by reviewing some essential features. By a Riemannian

manifold M we understand a connected C°° -manifold modelled on some

HUbert space H, such that the tangent space TM ~~~. H carries a

scalar product ( .  ,• ) which Is C°° in p E M and defines on TM

a norm 
~
. equivalent to the original norm of H

If p and q are two points in M, a path from p to q is a

continuous map c: [0 , 1] -~~ M such that c(0) = p and c(l) = q . The

set of all piecewise C~ paths from p to q will be denoted by c~~.
If c € is such a path , its length ~~~~ Is the real number defined

by:

1
(1. 1) ~~~~~~~ = f  I I c~ (t) H c( t) dt

The geodesic distance d on M is defined by:

( 1. 2) yp , q € M, d(p , q) = iflf {L~ (c)~ c € c~~)

It is compatible with the manifold topology of M . Any path c € ~ 
q

such that d(p, q) = ~~~(C) and the speed II~ II is constant will be

called a minimal geodesic; it must be C , and satisfy the equation

(where V denotes the Levi-Civita connection):

( 1. 3) V. (t) 2~(t ) = 0

which means that ~ (t) is obtained from ~(0) € TM by parallel trans-

lation along c . Conversely, any solution c of (1. 3) Is called a
Sponsored by the United States Army under Contract No. DAAG29-~ 5-C-
0024.



geodesic. The manifold M will often be assumed to be complete for

the metric d; this will imply that solutions of (1. 3) are defined for all

t € IR, 1. e. that geodesics can be indefinitely extended.

Throughout this paper , for & > 0 and p € M, we shall use the

following notations:

(1.4) B8 
= € TM H ~ I < 8  }, ~5 

= € TM J II ~ iI
~ 

= & }

(1. 5) = {m e M I d ( p ,  m) < &} ,  = {m € M I d ( p , m) = 5)

Whenever the solution of (1. 3) wIth the initial condition â(0) = € TM

exists up to t = 1, we set exp ~ = c(l) , and call exp the exponential

map. If the Riemannian manifold M is complete, exp~~ is defined for

all ~ € TM . Even If it is not , by the usual theorems on differential

equations (e. q. [SI, Th. IV. 1), there is a neighbourhood t.~ of (0 , P)

in TM such that the map (~~, 
m) -~~ exp~~~ is well-defined and C°° on

Now consider the map (
~~, 

m) -
~~ 

(expj , m) from ~ to M x M . Its

tangent map at (0 , p) Is easily seen to be an isomorphism , so that we

can apply the implicit function theorem. It follows that we can find

> 0 with the property that , for all S € ]0 , 5~[,  there exists an

> 0 such that , whenever m e we have the inclusion ,96 ~

and the map exp : B5 
—‘ is an tsomorphism.

Note in particular that any two points in ~~ can be Joined by a

unique minimal geodesic, depending smoothly on the endpoints; I. e.,

whenever q and m belong to t9 ’~, there is a single ~ € TMq such

that m = exPq~~, and the map (m , q) -, ~ is C~ .

— 2 —
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We define ~~(p) as the supremum of all r1 > 0 with the property

that any two points in ~~ can be joined by a unique minimal geodesic ,

depending smoothly on the end points. We have just  shown that ~~(p )  > 0

It follows from the definition that , for all & € ]0 , A(p) [, the exponential

map is a C°° diffeomorphism of B~ onto i9~ , and of S~ onto

( 1. 6) d(p, m) < ~~(p) r~ ~a~: m = exp~~ and I k f l  = d(p, m)

The Hopf-Rinow theorem ([7]) state s that any two points on a com-

plete finite-dimensional Riemannian manifold can be Joined by a minimal

geodesic. This is no longer true in the infinite-dimensional case as ob-

served by Grossman ([4]) and Mac Alpin ( [6]), who construct in Hilbert

space an infinite-dimensional ellipsoid , the great axis points of which

cannot be joined by a minimal geodesic . Recently, Atkin ([1]) has

modified the Grossman counterexample to construct a complete infinite-

dimensional Riemannian manifold M, and give two points on M which

cannot be joined by any geodesic at all. In other word s, the exponential

map need not be surj ective in the infinite-dimensional case.

In a pre~ ed ing paper ([2]) , I proved that any two points can be

• jo ined by a path which is almost a minimal geodesic.

Theorem A. Let M be a complete ( infinite-dimensional )  Riemannian

manifold , and take two point s p, q on M . For every ~ > 0, there

exist a C°° path c from p to q and a vector ~ E TM such that:

( 1.7) f II~
(t) II~ ~ 

dt < c + d(p , q)
0

-3-



1 2(1. 8) f I Iè(t) - ~ (t) fl dt < e
0 co

where ~(t) € TM
( t )  

is obtained from ~ by parallel translation along c.

In this paper , I shall prove that almost all points can be Joined

to a prescribed endpoint by a unique minimal geodesic. Recall that a

G5 subset is a countable intersection of open subsets.

Theorem B. Let M be a complete Riemannian manifold , and take a point

q on M . The set T of points p € M such that there exists a uniqu e

minimal geodesic fro m p to q contains a dense G5

Since M is a complete metric space , the Baire category theorem

hold s on M, so that a dense G5 subset of M is very large indeed ;

for instance , a countable intersection of dense G5 subsets is still a

dense G5 subset , and hence non-empty.

Note that the “ uniqueness ” part is of intere st even when M is

finite dimensional. In this case, M\ T  is the set of points p € M

such that there exist at least two minimizing geodesics from p to q

and is known as the cut locu s of q . Theorem B thus implie s that the

cut locus of any point in a complete finite-dimensional Riemannian

manifold Is included in a countable union of closed subsets with empty

interior. This is a known fact , although the usual proof is different ,

relying on transversality arguments applied to the exponential map from

q . In the infinite -dimensional case , however, even the “ existence”

part of Theorem B Is new, settling a question raised in [1] and [2].

1
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The proofs of Theorem A and B rely on special versions of Theorem

1.1 of [2], which I rephrase here for the reader ’ s convenience (taking

x = ‘..J7 in the original statement):

Theorem 1. 1. Let V be a complete metric space, and F: V-~ IR 8

lower semi-continuous function such that inf F ~ . For every £ > 0

there exists some point u E V such that :

(1. 9) F(u) < e  + inf F

(1. 10) Y v €  V, F(v) > F(u) - cd(u , v)

The proof of Theorem A relied on a “ smooth , Riemannian ” version

of Theorem 1.1, which was ([2]):

Theorem A’. Let M be a complete Riemannian manifold , and f: M —
~~

a non-negative function. For every £ > 0, there exists some point

p € M where:

h
(1. 11) f(p) < e + inf f

(1. 12) II grad f(P)II~ ~~~. c

Similarly , the proof of Theorem B will rely on a “ local , Riemannian ”

version of Theorem 1. 1. In [3], such a result was proved in the frame-

work of Banach spaces with differentiable norms , and it is of course no

trouble at all to restate it in the framework of Riemannian manifolds. We

begin by a definition:

-5—
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Definition 1. 2. Let M be a Riemannian manifold and f a real-valued

fu nction on M . We shall say that f is locally c-supported at p E M
or,

1ff there exist an open neighbourhood ~ of p and a C function

g: ~ ~ such that g(p) = 0 and:

(1. 13) ym E ~~, f (m)  - f( p) > g(m) - cd (m , p)

Taking the local chart defined by the exponential map, we get the

following characterization:

Proposition 1. 3. If f is locally c-supported at p E M, for every

c’ > c there exist ~~~
‘ > 0 and ~~~

‘ € TM such that:

(1. 14) € B~~, f(exp~~ ) - f(p) - (~~, ~‘) - c ’ II~ ll .

Conversely, if formula (1. 14) hold s with e ’ = c, then f is locally

c-supported at p

Proof. Let us first assume formula (1. 14) hold s with e ’ c, for some

= > 0 and some r, ’ = r, € TM . We can always assume that i
~ 

<.~~ (p) ,

so that exp1 is a well-defined C 00 map from &~ onto B~~, and

formula (1. 6) holds. Writing all this into (1. 14), we get:

(1. 15) Ym € !3~ , f( m) - f(p) - ( exp~~m, 
~
) > - c d(p, m)

which coincides with formula (1. 14) if we define g: IR by:

(1. 16) g(m) = ( exp ’ m, ~
,) .

There remains to prove the first part of Proposition 1. 3. Assume

cond ition (1. 13) is satisfied , and let c ’ > c be given. Choose

-6 -
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€ ]0, ~~(p~ so small that C t~ . Taking formula (1. 6) into account ,

we rewrite (1.13) as:

(1. 17) E B~~, f(exP~ ~~
) - f(p) > g(exp~~ ) - £ Il~ li p

But the function g ° exP~ : B~ —
~~ JR is differentiable at zero , so

that there exist ri ’ € ]0, 
~~

[ and r, ’ € TM with (recall that g(p) = 0):

(1. 18) II~ D < ~ ’ I~(exP~ ) - ( 
~~, ~‘)~ I < ( c ’ - e) II~ II

Formulae (1. 17) and (1. 18) together yield (1. 14). •

It is clear from the definition that if f is Frechet-differentiable

at p, then both I and -f are locally c-supported at p for every

c > 0 . The converse is proved in [3]. So Definition 1. 2 can be looked

upon as a very weak differentiabil i ty property. Its main interest  is that

it hold s for all points of a dense (not G 5) subset of M :

V Theorem B’. Let M be a R iemann ian manifold , and f a lower semi-

continuou s function on M . For every c > 0 , th e set of all points

p € M at which f is locally c-supported is dense in M

Proof. Let there be given a point q e M and a neighbourhood ~ of

q . We have to find some point p E ~~~
- where f is locally c-supported.

Choose & € ]0 , A(q) { so small that B5 C ~ ‘ and f is bounded

from below on (because of the lower semi-continuity):

(1. 19) inf ~ f ( m ) I m  € } � —~~~~ .



By Lemma 1.4 below, we can assume that the closure is

complete in the induced d~ metric .

Define a function ~i: 
JR by :

r~om) = [~ 2 
- lIexp ’m11 2 1 ’ if m~

(1. 20)  ) q q q

= ~~00 if m e

Clearly, ~ is lower semi-continuous on t~ and smooth on ~

We now set ~ = ~ + f .  This is a lower semi-continuou s function , bounded

— 8
from below, on the complete metric space /9 q By Theorem 1. 1, there

is some point p E such that:

(1. 21) q’(p) < inf {~ (m) I m  e + c

( 1. 22) ym € ~~~~~, ~ (m) > ~ (p) - cd(m , p)

By formula (1. 2 1), ~(p) is finite , so p E C ~~
- . Writing

= ~ + f into formula (1. 22),  we get:

~ 1 ( 1.23) Ym € ~~~~ , 1(m) - f(p) >~~(p)  - ~ (m) - ~ d(m , p) .

But this is exactly Definition 1. 3, with g(m) = 4i(p) - ~ (m), so

I is locally s-supported at p, and the proof is complete. •

Note that we did not assume the Rlemanniafl manifold M to be

complete. This is because of

Lemma 1.4. Let M be a Riemannian manifold. Then every point p € M

has a neighbourhood which is complete in the induced d-metr ic.

-8-
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Proof. Choose & E ]0~ A(p) [ so small that all the maps Tq eXP ’

are norm-bounded in ~(TM q~ TM~ ) by some uniform constant k when

q e . Take ~~ E ]0~ & (l +k) ~~[ . I claim that /3”
~
’ is complete.

Let us first note that , for any two points m and q In ~~~~ we

have , travelling along the minimal geodesics fro m m to p and from

p t o q :

( 1. 24) d(m , q) < d(m , p) + d(p , q) < 2 y

Let us now take a path c E which is not contained In
m P

Denoting by a- and T the first and last moments in ]0, 1[ when

d (p , c( t)) > 5, we hav e the inequ ality:

( 1. 25) ~~~~~ 

~ 
i t ô ( t )  II (t) dt + 

~ l 
i!~ Ot) li c Ot) d r .

Setting ~(t) = exp 1 c(t) E B 5 for 0 < t < a -  and T < t < 1, we

get:

(1. 26) II~(t) “ c(t) d r >  k 1 li p

> k ( Ii~ ( o )  li p — Ji~~(0) JJ

> k~~( & -  y)

and similarly:

(1. 27) 5 lI~ (t) 11 c(t) dt > k~~(6 - 
~

) .

Writing formulae (1. 26) and (1. 27) Into (1. 25) yields ~~~(c) > 2k ’( 5-y) . -
~~~

Taking into account the assumpti on S > ( 1+k)-y we finally get :

:~-9-



(1.8)  ~~~~~ > 2~

It fol lows that , whenever m and q belong to ,~~ , any path

S 

c E ~ q 
with le ngth < Z y mu st be contained in . Hence:

(1. 29) d(m , q) = i nf {L(c) c E ~ 
q

, c(t)  E ~t E [0 , 1])

Setti ng ~(t) = exp 1 c(t) e B~~, we get :

1
(1. 30) L(c ) > k ’ 5 Ii~(t) II~ dt

0

> k ’j f t ( l )  -

Writing this into formula (1. 29) yields:

(1. 31) vm ,q  E d(m , q) > k~~ I l e xp 1 m - exp 1 q l l

It fo llows from this estimation that if q ,  n E IN , is a Cauchy

sequence in ,~~~~~
‘

, then exp ’ q will be a Cauchy sequence in

and hence will converge to some ~ E B ”
~ , so that  q will converge

to exp ~~ € . So i~
”
~
’ is complete , and so is the proof. •p p p

-10-
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II. Proo f of Theorem B.

From now on , we are given a complete Riemannian manifold M

and some point q E M . We shall denote by d the function m -~~ d(q , m)

o n M .

For any p � q, we set D(p)  = inf{~~(p) , d(q , p) } > 0 . For any

6 E ]0 , D(p) [ and any path c € , we de note by T 6 (c) the set of all

mome nts when c crosses

(2.1)  T 6 (c) = {t e [0 , l ] i  d (c( t ) ,  p) = 5)

With any a > 0, we associate the non-empty closed subset C~ (a)

of S defined by:

( 2 . 2 )  C~~(a) = {c(t) I c E  ~~~~ L~ (c) <~~(p, q) ÷~~, t E  T 8 (c)}

Recall th at the diameter of C~~(a) , de noted by diam C~(a) , is the

supremum of the distance between two point s in C~ (a)

The proof of Theorem B goes through five lemmas.

Lemma 2 . 1 .  Assume dq is locally c-supported at p e M\ { q )  for some

S c > 0 . Then, for any 0 > 4’~i e :

(2. 3) E ]0 , D(p)[: VS E ]0 , i{, ~a > 0: diam C~ (a) < 06

Proo f. Take c ’ > c and p > 0 so small that :

I
( 2 . 4 )  0 > 4 ( c ’+  p /2 )2  .

By Pro positIon 1. 3 there exist ~ E JO , D(p) f and r~ € TM~ such
‘Ii

that :  -11-
.S~
J

t
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( 2 . 5 )  ~ d(q , exp ~)>d (q, p) + ~~~~~~~ 
- c ’j I~ j I

A first  consequence of th is  is as follows. Applying the tr iangle

i nequ al ity:

I
(2.6) d(q , exp ~ ) < d ( q , p) + d (p , exP~~~)

and taking formula (1. 6) into account, we get:

(2 .7 )  li~~Ii < r ~-4 (1 + c ’ ) l I ~~lI .~~~ 
(
~~,

which means that :

(2. 8) kH~~~l + c ’

We now take S € JO , 
~~~, 

any path c E C with L(c) < d(q , p) + ~S

and any s E T8(c) . I t f o l lows f ro m the def ini t ions that :

(2. 9) d(q , c(s)) < L(c) - 5 lIo(t) ii 1~
dt

0

< d(q , p) + pô - d(p, c(s))  .

Writing this inequality into formula (2. 5), and setting c(s)  =

S exP~’c(s) € S~~, we get:

(2.10) -(1 - c ’)k(s) II~ + pô > ( i(s) ,

Dividing by S throughout , this becomes:

(2. 11) (~~~~(s)/5 ) < -1+ c’ +
~~

Taking formula (2. 8) into account , we get:

-12-
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(2. 12) ( - ~ /ift ii~ ~(s)/ 6) > (1 - e ’ - p ) ( l +

As both - ~/lft Ji and ~(s)/ 5 are unit vectors , this implies that:

(2.13) ll~(s)/6 + ~/Ift 1I 11 2 
< 2(2 c ’ + p)(1 +

If c ’ E is any other path with L(c ’) < d(p , q) + ps , and if

5~ E T ( c ’), we also will have, setting ~‘(s ’) = exP~
1 c ’(s ’)

(2. 14) ll~’(s ’)/5 + ~/kll~ ll 2 
< 2(2 c ’ + ~)( l +

Comparing formulae (2. 13) and (2. 14), we get:

(2 . 15) fl~~(s) - ~‘(s ’ ) ll < 2~~2 ( 2 ~~’ + ~~~ ( l + e ’ ) 2  S

Taking inequality (2. 4) into account , this becomes:

(2. 16) ii~~(s) - e, ’(s ’) II < 06

which i s the desired result , since . a( s) and ~ ‘(s ’) are arbitrary points

in C 6 ( p1) . •

We now introduce the subset P 9 of M defined by:

(2. 17) R 0 = {p # q I  36 E J O , D(p) [, 2a > 0 :  diam C~(a) < es)

Lemma 2. 1 implIes that if d is c-supported at p � q, then p

— 

q

belong s to R for all 0 > 4~J c . More precisely:

Lemma 2 . 2 .  Assume d q is locally s-supported at p e M\ {q ) for some

£ > 0 . Then p belongs to the interior of R 0 for all 0 > 4/7:

Proof. Choose k € J1, 2[ a nd 0’ > 4’~J7 such that k2 (2- k) ’ 0’ = 9 .

— 13—
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Now take any 5~ e JO , D(p) [ . It follows from the de f in i t i on  of D(p)
1 6 1that the map ~ = exp ° exp is well-defined from B into TM

S 5 m m P P m ’
for all m e  ~ 1 

Note that is C 00 
in (m ,~~) and that q’ isp

6 p

the identity on B ’ . It follows that e JO , 6~[ can be found so that :

(2.18) kD p~~.
5
2 

and d(m ,p )<5 2 =~ k
4
< i I T~c’ Ii < k

Set 8
3 

= . For any m e ~ and any two points ~~ and ~~~
‘

S p

in B 3
, the inverse image by of the line segment between 

~~~~~~~
- 36 3and 

~‘m~~
’
~ 

lies entirely within B , so that est imation (2. 18) hold s

all along. It follows easily that whenever~ m, exp ~ and exp ~~~
‘ be-

long to 
~~~~~~ we have the inequality: 

p

(2.19) k I ~ -~’ f l  <I l~
2m(

~
) - 

~m~ ’ ’ m~-~~~ 
-~~iI~

By Lemma 2. 1, we can choose & E JO , 53{ and a > 0 such that :

(2.20) diam C~~
”
~(a) < 350’/4 .

Set ~ = m l  {&/4 , a/3, 3 5 (1-k~~ )/4 } I claim that ~~ C P

First of all , we notice that ~~35/4 c c whenever m e

L J by the triangle inequality. Since 5S/4 < 5~ < D(p) , any two points in
P . 6 can be Joined by a minimal geodesic depending smoothly on the

end points , so 1 < D(m) for all m €

Take any m ~~~~~~~~ any path c € such that L~~(c) < d(m , q) + a/3

and any time s e T (c) . Set 
~m = exp C( s )  € Sm We define a new

path ~~~~~~ by:

-14 -
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f~(t) c(2t( 1 - s) + 2s - 1) for 1/2 < t  < 1

-

• 
, (2.21) c( t ) = ex~ 2t~ (s) for 0 <t < f

Clearly, a is obtained from c by cutting short between m and

c(s) , so that ~~~~~~ < ~~~~~~ . We now go one step further to build a

path ~~€ C~~; set ~ = exP~
1
m~ and define:

f~(t) = c(2t-1) for 1/2 <t < 1

(2 .22 )  “I
L~t) = exp 2t~.i for 0 < t  < 1

Clearly:

(2. 23) L (c) = ~~~~~~ + d(m , p)

< d(m , q) + a/3 + d(m , p) . :1
Using the triangle inequality:

(2. 24) ~~~~~ < d(p, q) + d(m , p) + a/3 + d(m , p)

< d(p , q) i- a

Take a- E ~~~~~~~~ and set 
~ 

= exP~
1 

c(a -) e ~36/4 
. If c ’ e

is another path such that L~~(c ’) < d(m , q) + a/3, we define E

~ ~~~~, ~ € ~~~, ç’ e in the same way, and we still have
m p p p

< d(p , q) ~- a . It follows fro m formula (2. 20) that :

(2 .25 )  llc~ - ~,‘ l l < 350’/4

Using estimation (2. 18), this implies that:

(2 .2 6) ‘m~~p~ 
- 

~~~~~~~~~~ 
3Ske’/4

-15-
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The same estimation applied to k u  = 36/4 yields

(2. 27) 
m~~p~ 

- exp rn
1
(p) 11m ~ 

35k
1
/4

and since H exp
4
(p) 11 m 

= d(m , p), this yields

(2.28) 11
~
’m~ ’p~

’1 m 
> 36(2k

1 
- 1)/4

and likewise:

(2.29) ‘m p ~~m~~ 
36(2k

1 
- 1)/4

It follows from the construction that:

(2. 30) 
~m ~~m p

’
m~~p~

’m

(2. 31) = ~

and hence:

(2. 32) 
~~~~~~~~~ 

5k’m~~p
) - 

~~~~~~~~~ 
f
~~’m R~p

)
~ ~~~~~~~

Using inequalities (2. 26) and (2. 28), this yields:

(2. 33) “e m 
- 

~ n 0 m < 5k
2
(2-k) 

1

- 
S wh ich Is the des ired resul t, since 

~ 
and ~~~

‘ are two arbitrary points

~ ~~
(a). U

Take p ~ q and 6 € JO, D(p)[ . We shall say that a path c €

is geodesic inside if there exists ~ € TM such that c( t) = ex p t ~

for 0 <t < o/ II~ II . We denote by R the set of points p € M\ {q)

such that there exists an increasing sequence p -
~~ D(p) with the following

-16-
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property: for any sequence c € ~ such that L~(c) -ø (p, q) and C

is geodesic inside ,9 n
, the sequence 

~n(0)/II~n(O)lI p converges

in S . We first connect this up by proving that R = fl R

Lemma 2. 3. Assume p belongs to R
0 

for every 8 > 0 . Then p be-

longs to R• _ _____  00

Proof . By the assumption on p, there exists a sequence in JO ,

D(p) [ and a decreasing sequence a > 0 converging to zero such that :

1
(2. 34) diam C ‘1(a ) < n  5p n —  n

Let p~ be an increasing sequence such that: 6n 1 ~n < D(p) and

p -
~~ D(p) . Now let c be any sequence in such that ~~ ( c )  — ø d (p ,  q)

and c is geodesic inside ~~
n 

. By readjusting the time parameter if

necessary , we may assume that there exists 
~ 

€ S’ with C (t) = exp t 
~

for 0 < t  < p ,  so that = 
~n
(0)
~
’
~ ~~( O ) I l  . Note that whenever k > n

we have 5n lP n lP k’ so tha t ck intersects &:n at eXP S~~~k

For any prescribed n, there is an N > n such that L~ (c~ ) I
~~

S
S~ 

p

d(p, q) + an for all k > N . Tak ing any i > k > N, we find by the

preceding remark that both 5~~~ and 5n ~k belong to c n
( a )  . By

formula (2. 34), this boils down to:

(2. 35) Yn , ~N: Vt > k > N , lI~k
_
~ ,Il P 1n .

so that the sequence 
~n is Cauchy, and hence converges in S1 

. U

Take p € M\ {a)  and S € JO , D(p)[ . Recall that the distance

fro m q to is defined as :p -17-
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( 2. 36) d(q, 3
5) = tnf {d(q , m ) I m €  ~ 8 )

It follows eas ily from the de finit ions that :

(2. 37) d(q, 3~~) = d(q, p) - &

A nearest point to q in 3
5 is a point m € such that d(q, m) =

d(q, g~~) . Such points do not always exist in the infini te-dimensional

case, and even in the f ini te-dimensional  case they need not be unique.

So one of the main interests of R lies in the following:

Lemma 2. 4. Assume p belong s to R . Then there exists ~.i € S1
p p

such that for all 6 € JO , D(p)[, exp 6~i Is a nearest point to q In

This point I.L is the common limit of all sequences ~~(O) / ll~~(O) ll

for cn € C ’
~ geod esic in side ~ and ~~~~~~~~ -ø d(p , q)

Proof. Take a sequence c in such that c is geodesic inside
p n p n

and ~~~~~~~~ -ø d(q, P) . We know that 6n(O)/ ll
~ n(O) li p converges

to some ~ in S1 . Now this limit ~ cannot depend on the particular

sequence chosen. For if c t were another , with C ’ (O)/ Il~ ’ (0)11 con-

verging to ~~~
‘
, we could define a third sequence c” with the same

properties by setting alternatively c” c if n is odd and c~ = c’ if

n is even, and ~“(O) / ll~ ” (O ) ll would still have to converge since

p € R . So ~~ = ~~~
‘
, and we denote by ~i th is common value.

Let c be any sequence in such that L~ ( c )  —ø d(p, q) . Take

s € T n 
(C ) ,  and set c (s ) = exp p ~ , with ~ € S . We replace

S 
n p n n n  p n n  n p

c by the shortcut a constructed as follows:
fl n

-18-
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C c (t) = c (2 t ( l - s  ) + 2s -1) for -~~ < t < 1
fl n n n 2 _ —

(2.38)

L c (t) = exp 2t p 
~ 

for 0 < t <

We have L ( c n) >  L~ (c~ ) > d(p , q), so L~ (~~ ) must converge to

d(p , q) . Moreover , C obviously is geodesic inside . It follows

that the sequenc e 
~n = ~ n hm n (0) II converges to ~L in S’ .

Now take any & e jO , D(p) [ . There is an N so large that p >  6

whenever n > N then C intersects at exp S~ , which con-

verges to exP~ 6~~ . We have: 

p

(2. 39) d(q , exP p 6
~~n

) I L~
(C n)

Letting n go to infinity yields:

S (2 .40)  d(q , exP~~S~~~) < d(p , q) - 5 .

By formula (2. 37), this means precisely that exP~ 5~ is a nearest

point to q in .

Another usefu l property of P
00 

is the following:

Lemma 2. 5 . Assume p belong s to P
00 

. Then so does exP~ 5~~~,

whenever 6 € JO , D(p)[ .

- • 
Proof. Set m = exp ~~~ 

with 0 < S < D(p) ; we have to prove that

m € R
00 

. Note first that D(m) > D(p) - 6; indeed , whenever ~~ 
< D(p) - 6 ,

there is some 6’ < D(p) with ~~ C $~~, 
so arty two points in —

Li -19-
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and hence in ,~~~~~ — can be Joined by a uniqu e minimal geodesic , de-

pending smoothly on the end points. Let p ,  0 < p < D(p) , p D(p)

be the increasing sequence characteristic of p € P . By the preceding

remark , it is possible to choose an increasing sequence a- , 0 < a -  c- D(m) ,

-, D(m), such that :

(2.41) V n E  IN, a- > p - 6

Let c be a sequence in ~ 
q such that  ~~ (c ) —

~~ d(m , q) and cn m m n n

is geodesic inside ~~~ . We can write , by readjusting the time parameter

if necessary, c (t) = exp t r~ for 0 < t < a -  , with 1k II = 1 . Nown m n — — n n m

set rn = exp D(p) ~.L E M . I claim that the sequence c ( p  - 6) e M

converges to rn . Fro m inequality (2. 41) it will follow that the sequence

r, converges in S
1
, and Lemma 2. 5 will be proved.

Since p —
~~ D(p) , we can choose N1 so large that p > 6 when-

ever n > N1, so that the sequence Cn (P n - 5) is well-defined, starting

at N .

Let c > 0 be given. We have seen in Lemma 2. 4 that m is a

nearest point to q in ~ 6 
. It follows from this and formula (2. 37) that :

P

(2 .42)  ~~~~~ + S d(p, q) .

Take Sn 
€ T~~ ( c ) ~ and set 

~n = ~~ exp
1 
cn

(s
n
) . Def ine a new

path c c  by:

f c (t) = c (2t(l-s ) + 2s - I) for ~ < 1 . 1
(2.43) 

\ 
c (t) = exp 2t 

~~~~ 
for 0 < t < -

~~ .

-20-
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Let us do some elementary computations:

(2. 44) ~~~~~ < d(p, m ) :  d(m , c ( s )) + 
~~n~~~~

t)
n t dt

< 6 + I II ~n ( t) 11 c (t) dt + 

~~n 

II ~n(t)h1 c (t) 
dt

S 

= &

It follows from this and formula (2. 43) that ~~~~~ —
~~ d(p, q)

Moreover , cn is clearly geodesic inside ,9 n Using Lemma 2.4,

we conclude that the sequence 
~ 

converges to 
~ 

in S~ . Recalling

that p -* D(p) , we see that c (  f) exp 
~n~ n 

converges to rn in M

Since Cn ( l/2 ) = c ( s ), we get:

(2 .45 )  d( rn , C ( S )) —~~ 0

We know that :

(2. 4 6) d(m , c ( s )) > d(p , c ( s ~ )) - & = p~ - 5

Hence p - I S
n Let us do some elementary computations

agai n:
p — S

(2. 47) d( c 0 (s~ ), c ( p - 6)) I 

~~n 

1~~
t)
~~t) dt

= ~~~~~~ — f  Il~n t IIc(t) dt - I lI~~tdI ( dt

• 
S 

Using inequality (2. 4) and the fact C is geodesic inside ~~ n ,

th is becomes:

-21~
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(2 .48)  d( c0( s ) ,  C n (P n
_ & ))  I L~~(c~ ) - (p -5) - d(q , C n

(S
n

))

But c ( s ) E ~ ; u sing formula (2.  37) yields:

(2.49) d(q,c(s ))> d(q, ~~~ 0
) = d(q,p) - p

Writing this into formula (2. 48), we get:

(2. 50) d(c (s ), Cn(p n
_S)) <~~~(~~) + 6 - d(q, p) -

Letting n go to infinity, we have by formula (2. 42):

(2. 5]) d(c (s ), c(p -6)) 0

Adding (2.45) and (2. 51) yield s the desired result.

The hard part of the proof Is over now, and the remainder is soft

analysis.  For all n e IN, define ~i as the interior of R
1/ 

. By

construction, 12 is an open subset of M . By Lemma 2. 2 , for any

C e JO , l/l6n 2
[, it contai ns the set T of all points p ~ q at which

d is c-supported. By Theorem B’ , the set T is dense in M . So
q c

n € IN, is a sequence of open dense subset s of M . Since M Is

a complete metric space , the Baire category theorem holds , and the

intersection R = fl 12 is a dense G subset of M . Note that R C R
-
. n 6 0 0’

n
whenever 0 < 8 < 9’ , so that R C fl R . It follows by Lemma 2. 3 that

0~~~
R C R .  I claim that from every p E P there Is a single minimal geodesic

to q

The proof now mimic s the classical argument for Hopf- Rinow in the

It . finite-dimensional case (see [7J for instance).  Take any pe R
00 

and

S c -22-
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set p =  d(p, q) . Take & E JO , D(p)[ . By Lemma 2 .4 , there is in

a nearest point exp 6 to q . Define a C path c by c(t) =

exp t p~ . I clai m that , for all t e [0 , l[

(2. 52) c( t) E R and d(q , c(t)) = p( 1-t)

Letting t -~ 1, si nce dq is continuous, this yields d(q , c( 1)) = 0

so c(l) = q and c is actually a geodesic fro m p to q . By cons t ruc t ion ,

its length is p= d (p , q), so c is minimal .  If c ’ e is another min imal

geodesic , then the constant Sequence in C~ defined by c = c ’ for all

n sat isf ies  ~~~~~ d(p, q) and certainly is geodesic inside . By

Lemma 2 .4 , ~‘(0)/6 has to be , so c ’ coincides with c

So we are left with proving formula (2. 52) for all t in [0 , 1[ . By

Le mmas 2. 4 and 2. 5, used in conjunction with formula (2. 37), it is true

for al l t in [0 , D(p){ . Let us denote by t the supremum of all s E 10 . 11

such that  formula (2.  5q) holds on [0 , s[, and assume that t < 1

We will derive a contradiction. Indeed , set p = c(t ), and take any

5 E JO , D(p) [  . We already know that t > D(p) > 0 . Since c is smooth ,

there exists a time s E ]0, t [  such that d (p ,  c( s)) < 6/ 4  . Set c(s)  = m

Now, since 6 < D( p ) ,  any two points in can be j oined by a

unique minimal geodesic , depe nding smoothly on the endpoints. By the

triangle inequality, &~~
2 C 

~~~~~~~~~ 
so that  6/2 < D(m) . By assumpt ion ,

fo rmula (2. 52) is satisfied on [0 , t [ . It follows that d(q, m) = p ( l - s )  ,

and m € R . By Lemma 2 . 4 , exp ~ ~m h1’2 is a nearest point to q in

-23 -
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o/z
, and we have , by formula  (2 .  37):

(2 .  53) d(q ,  exP 6
~ m~

’2) = p ( l - s )  -

By the t r iangle  inequal i ty :

(2 .  54) d (p , ex~ 61.L /2 ) > d ( p , q) - d(q , exP m 6
~~m~

’2)

= p s  + 6/2

Set p s ( p s  + 6/2)~~ = a . We define a path c ’ from p to

exp 6
~~m //’2 by:

c ’ (t) = exp [t p s ~i /a J for 0 < t  Ia

(2. 55)
c ’(t) = exp m[( t_ a ) S

~ m /2( 1_ a)} for a It  11

The length of c ’ is precisely ps + 6/2 , and I~~~~~
’ 

I~~~ 
Is constant.

It follows by inequality (2. 54) that c ’ is a minimizing geodesic hr orn p

to exp 6~ m
/’2 Since c ’(t)  = c(ts/a ) for 0 It Ia , and c also is a

geodesic , we get:

(2.  55) c ’(t) = c(t~ Ia) for 0 It  I 1

It follows that:

(2.  56) c ( t )  = exP [-~~ (1~~~) ~~~m’ 
for s I t  I s/ a

By Lemmas 2. 4 and 2. 5, alway s taking equality (2.  37) into account ,

formula  (2. 52) hold s for s It  < s/a . But s/a = s + 6/2 p . Since

d(c( t ), c ( s ) )  < o/ 4 , and the speed along c has constant magnitude p ,

we have t -  s <  5 /4p . S ot -  s <  & / 1 p .  So < S/a , the desired contradiction.
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